carbonai.MagicPowerMeter.measure_power¶
- MagicPowerMeter.measure_power(line, cell)¶
%measure_power [--step STEP] [--data_type DATA_TYPE] [--data_shape DATA_SHAPE] [--algorithm_params ALGORITHM_PARAMS] [--comments COMMENTS] power_meter package algorithm
An IPython magic function to measure the power consumption of a given cell
- Parameters
- power_metercarbonai.PowerMeter
A PowerMeter object used to collect the carbon logs
- packagestr
A string describing the package used by this function (e.g. sklearn, Pytorch, …)
- algorithmstr
A string describing the algorithm used in the function monitored (e.g. RandomForestClassifier, ResNet121, …)
- step{‘inference’, ‘training’, ‘other’, ‘test’, ‘run’, ‘preprocessing’}, optional
A string to provide useful information on the current stage of the alogrithm
- data_type{‘tabular’, ‘image’, ‘text’, ‘time series’, ‘other’}, optional
A string describing the type of data used for training
- data_shapestr or tuple, optional
A string or tuple describing the quantity of data used
- algorithm_paramsstr, optional
A string describing the parameters used by the algorithm
- commentsstr, optional
A string to provide any useful information
See also
MagicPowerMeter
Loads the jupyter carbonai extension
PowerMeter
Instantiate a PowerMeter
PowerMeter.measure_power
Another way to measure the power usage of some code
Examples
Load the
MagicPowerMeter
extension then declare a PowerMeter as usual%load_ext carbonai.MagicPowerMeter from carbonai import PowerMeter power_meter = PowerMeter(project_name="MNIST classifier", is_online=False, location="FR")
In each cell you want to measure, you can then use the
measure_power
cell magic%%measure_power power_meter "package_name_used" "algorithm" --step "training" --data_type "tabular" --data_shape "your_data_shape" --algorithm_params "n_estimators=300, max_depth=15" --comments "Classifier trained on the MNIST dataset, 3rd test" # Do something
- positional arguments:
power_meter The PowerMeter object of this project package The name of the package used here algorithm The algorithm type used here
- optional arguments:
- --step STEP
Type of data used
- --data_type DATA_TYPE
Type of data used
- --data_shape DATA_SHAPE
Shape of the data used
- --algorithm_params ALGORITHM_PARAMS
Some informative parameters used in your algorithm
- --comments COMMENTS
Comments to describe what is done